FPGA-Based Radiation Tolerant Computing

Dr. Brock J. LaMeres

Associate Professor Electrical & Computer Engineering Montana State University

College of ENGINEERING

Outline

1. Overview of Montana State University

• Vitals, Highlights of Interest

2. Research Statement

• Enabling Reconfigurable Computing for Aerospace

3. Radiation Effects in Electronics

- Sources & Types of Radiation
- Effects (TID, SEE, Displacement Damage)
- FPGA Specific Effects

4. Existing Mitigation Techniques

- Physical (Shielding, RHBD, RHBP)
- Architectural (TMR, Scrubbing, Error Correction Codes)

5. Our Approach

- Redundant Tiles (TMR+Spares+Scubbing)
- Prototyping
- Test Flights (Local Balloons, HASP, Future Sub-orbital)

Overview of MSU

Public, Land Grant Institution

- Located in Bozeman, MT (pop. ~40k)
- 14,600 students
	- o 70% in state, 87% undergrad
- Ranked in top tier of Carnegie Foundation's Research Universities with "Very High Research Activity" (~\$115M)
- Academically known for:
	- o Engineering, Agriculture, Nursing, Architecture

Mountains & Minds

Overview of MSU

What we're really known for:

- A Mountain Town
- Fishing
- Skiing
- Hiking
- Yellowstone Park

FCS Football

- Currently ranked #3
- Cat-Griz Rivalry 31st oldest in country (started in 1897)

Overview of ECE

Electrical & Computer Engineering at MSU

- 13 full time tenure/tenure-track + 3 research faculty
- \cdot ~330 students (300 undergrad + 30 graduate)
- BS Degrees in EE and CpE
- MS in EE
- Ph.D. in Eng with EE Option
- Heavy Emphasis on Hands-On Education

Flying Experiments on Local High Altitude Balloon Platform

Participating in RockOn Sounding Rocket Workshop

AUVSI RoboSub Design Team Participating in NASA Lunabotics Mining Competition

ECE Research Areas

Digital Systems

- Reconfigurable Computing
- Fault Tolerant Architectures

Micro/Nano Fabrication

- MEMS Structures
- Deformable Mirrors
- Nano Optics

- Remote Sensing
- Climate Monitoring

Power & Energy

- Wind / PV
- Fuel Cells - System Modeling
-

Signals & Controls - Acoustics

- System Identification

- Wireless Networks for Rural Regions
- Smart Antenna Systems

MSU Facilities of Interest to My Work MY MONTANA

Montana Microfabrication Facility

- Class 1000 Clean Room
- Low volume, high mix technology
- Research, Education and Local Business

Space Science & Engineering Laboratory

- Student Fabricated Small-Sat Program
- Launched 1st CubeSat in October 2011
- Measuring radiation levels in Van Allen Belts
- Has been sending data to MSU for over a year
- Over 5500 orbits as of this week

Subzero Science and Engineering Laboratory

- 2700 ft² facility with 8 walk in cold rooms
- Used to study effect of cold on projects across many scientific disciplines
- Temperatures down to -60 $\mathrm{^{\circ}C}$

Research Statement

Support the Computing Needs of Space Exploration & Science

- Computation
- Power Efficiency
- Mass

Space Launch System (SLS)

Research Statement cont…

Provide a Radiation Tolerant Platform for Reconfigurable Computing

- Reconfigurable Computing as a means to provide:
	- o Increased Computation of Flights Systems
	- o Reduced Power of Flight Systems
	- o Reduced Mass of Flight Hardware
	- o Mission Flexibility through Real-Time Hardware Updates
- Support FPGA-based Reconfigurable Computing through an underlying architecture with inherent radiation tolerance to Single Event Effects

Let's start with what is NOT Reconfigurable Computing

- A CPU/GPU while you have flexibility via programming, the hardware is still fixed
	- o The instructions that can be executed are fixed in the sequence controller
	- \circ The size of memory is pre-defined
	- o The IO is pre-defined
- An ASIC the hardware is fixed during fabrication.

Are There Advantages to these Conventional Systems?

- Yes, they are well understood and easy to program (particularly the single core model)
- Yes, when the task maps well to the hardware, they have high performance (e.g., GPU)
- Yes, they can handle a large array of tasks (albeit sometimes in a inefficient manner)

Are There Disadvantages to these Conventional Systems?

- Yes, unless the task does not map directly to the hardware, they perform poorly.
- Yes, much of the hardware that allows them to handle a variety of tasks sits idle most of the time.

A System That Alters Its Hardware as a *Normal Operating Procedure*

- This can be done in real-time or at compile time.
- This can be done on the full-chip, or just on certain portions.
- Changing the hardware allows it to be optimized for the application at hand.

What Technology is used for RC?

Field Programmable Gate Arrays (FPGA)

- Currently the most attractive option.
- SRAM-based FPGAs give the most flexibility
- Riding Moore's Law feature shrinkage

What are the Advantages of RC?

Computational Performance

- Optimizing the hardware for the task-at hand = architectural advantages
- Eliminating unused circuitry (minimize place/route area, reduces wiring delay)

Reduced Power

- Implement only the required circuitry
- Shutdown or un-program unused circuitry when not in use

Reduced Mass

- Reuse a common platform to conduct multiple sequential tasks in flight systems
- This effect is compounded when considering each flight system has backup hardware
- Mass is the dominant driver of cost for space applications
	- \circ \$10,000/lb to get into orbit.
	- \circ NASA's goal is \$100/lb by 2025
	- o Shuttle cost ~\$300-\$500M per launch with 50,000 lb capacity

A Sequence of Unique Tasks

On Earth Our Computers are Protected

- Our magnetic field deflects the majority of the radiation
- Our atmosphere attenuates the radiation that gets through our magnetic field

Our Satellites Operate In Trapped Radiation in the Van Allen Belts

• High flux of trapped electrons and protons

In Deep Space, Nothing is Protected

- Radiation from our sun
- Radiation from other stars
- Particles & electromagnetic

You Are Here

Where Does Space Radiation Come From?

- Nuclear fusion in stars creates light and heavy ions + EM
- Stars consists of an abundant amount of Hydrogen $(1H = 1$ Proton) at high temperatures held in place by gravity
	- 1. The strong nuclear force pulls two Hydrogen (¹H) atoms together overcoming the Columns force and fuses them into a new nucleus
		- The new nucleus contains 1 proton $+ 1$ neutron
		- This new nucleus is called *Deuterium (D) or Heavy Hydrogen* (²H)
		- Energy is given off during this reaction in the form of a Positron and a Neutrino
	- 2. The Deuterium (²H) then fuses with Hydrogen (¹H) again to form yet another new nucleus
		- This new nucleus contains 2 protons $+1$ neutron
		- This nucleus is called *Tritium* or Hydrogen-3 (³H)
		- Energy is given off during this reaction in the form of a Gamma Ray
	- 3. Two Tritium nuclei then fuse to form a Helium nucleus
		- The new Helium nucleus ($4H$) contains 2 protons + 2 neutrons
		- Energy is given off in the form of Hydrogen (e.g., protons)

Radiation Categories

- 1. Ionizing Radiation
	- o Sufficient energy to remove electrons from atomic orbit
	- o Ex. High energy photons, charged particles
- 2. Non-Ionizing Radiation
	- o Insufficient energy/charge to remove electrons from atomic orbit
	- o Ex., microwaves, radio waves

Types of Ionizing Radiation

- 1. Gamma & X-Rays (photons)
	- Sufficient energy in the high end of the UV spectrum
- 2. Charged Particles
	- Electrons, positrons, protons, alpha, beta, heavy ions
- 3. Neutrons
	- o No electrical charge but ionize indirectly through collisions

What Type are Electronics Sensitive To?

- Ionization which causes electrons to be displaced
- Particles which collide and displace silicon crystal

Classes of Ionizing Space Radiation

Classes of Ionizing Space Radiation

- 1. Cosmic Rays
	- o Originating for our sun (Solar Wind) and outside our solar system (Galactic)
	- o Mainly Protons and heavier ions
	- \circ Low flux
- 2. Solar Particle Events
	- o Solar flares & Coronal Mass Ejections
	- o Electrons, protons, alpha, and heavier ions
	- Event activity tracks solar min/max 11 year cycle
- 3. Trapped Radiation
	- o Earth's Magnetic Field traps charged particles
	- Inner Van Allen Belt holds mainly protons (10-100's of MeV)
	- Outer Van Allen Belt holds mainly electrons (up to ~7 MeV)
	- o Heavy ions also get trapped

Which radiation is of most concern to electronics?

Concern

- Protons (¹H)
	- o Makes up ~85% of galactic radiation
	- o Larger Mass than electron (1800x), harder to deflect
- Beta Particles (electrons & positrons)
	- o Makes up ~1% of galactic space
	- o More penetrating than alphas
- Heavy lons
	- o Makes up <1% of galactic radiation
	- \circ High energy (up to GeV) so shielding is inefficient
- Neutrons
	- o Uncharged so difficult to stop

FPGA-Based Radiation Tolerant Computing

No Concern

- Alpha Particles (He nuclei)
	- o Makes up ~14% of galactic radiation
	- \circ ~ 5MeV energy level & highly ionizing but…
	- o Low penetrating power (50mm in air, 23um in silicon)
	- o Can be stopped by a sheet of paper
- Gamma
	- \circ Highly penetrating but an EM wave
	- o Lightly ionizing

Hole Trapping

What are the Effects?

- 1. Total Ionizing Dose (TID)
	- Cumulative long term damage due to ionization.
	- o Primarily due to low energy protons and electrons due to higher, more constant flux, particularly when trapped
	- o Problem #1 Oxide Breakdown
		- » Threshold Shifts
		- » Leakage Current
		- » Timing Changes

- EHP formed by ionization

Shallow Trench to Thin Oxide Interface (STI)

What are the Effects?

- 1. Total Ionizing Dose (TID) Cont…
	- o Problem #2 –Leakage Current

- Leakage between Source & Drain at edge of transistor - Leakage between PMOS & NMOS

What are the Effects?

- 2. Single Event Effects (SEE)
	- Electron/hole pairs created by a single particle passing through semiconductor
	- o Primarily due to heavy ions and high energy protons
	- o Excess charge carriers cause current pulses
	- o Creates a variety of destructive and non-destructive damage
	- The ionization *itself* does not cause damage, the damage is secondary due to parasitic circuits

"Critical Charge" = the amount of charge deposited to change the state of a gate

What are the Effects?

2. Single Event Effects (SEE) - **Non-Destructive** (e.g., soft faults)

What are the Effects?

2. Single Event Effects (SEE) - **Non-Destructive** (e.g., soft faults)

What are the Effects?

2. Single Event Effects (SEE) – **Destructive** (e.g., hard faults)

What are the Effects?

- 3. Displacement Damage
	- o Cumulative long term damage to protons, electrons, and neutrons
	- o Not an ionizing effect but rather collision damage
	- o Minority Carrier Degradation
		- » Reduced gain & switching speed
		- » Particularly damaging for optoelectronic & linear circuits

Shielding

- Shielding helps for protons and electrons <30MeV, but has diminishing returns after 0.25".
- This shielding is typically inherent in the satellite/spacecraft design.

Shield Thickness vs. Dose Rate (LEO)

Current Mitigation Techniques

Radiation Hardened by Design (RHBD)

- Uses commercial fabrication process
- Circuit layout techniques are implemented which help mitigate effects

- Reduces leakage between NMOS & PMOS devices due to hole trapping in Field Oxide **(STI Region 2)**
- Separation of device + body contacts
- Adds ~20% increase in area

- This oxide reduces probability of hold trapping.
- Process nodes <0.5um typically are immune to Vgs shift in the gate.

Radiation Hardened by Process (RHBP)

- An insulating layer is used beneath the channels
- This significantly reduces the ion trail length and in turn the electron/hole pairs created
- The bulk can also be doped to be more conductive so as to resist hole trapping

Current Mitigation Techniques

Radiation Tolerance Through Architecture

- 1. Triple Module Redundancy
	- o Triplicate each circuit
	- o Use a majority voter to produces output
	- o Advantages
		- » Able to address faults in real-time
		- » Simple
	- o Disadvantages
		- » Takes >3x the area
		- » Voter needs to be triplicated also to avoid single-point-of-failure
		- » Doesn't handle Multiple-Bit-Upsets

Current Mitigation Techniques

Radiation Tolerance Through Architecture Cont…

- 2. Scrubbing
	- o Compare contents of a memory device to a "Golden Copy"
	- o Golden Copy is contained in a radiation immune technology (fuse-based memory, MROM, etc…)
	- o Advantages
		- » Simple & Effective
	- o Disadvantages
		- » Sequential searching pattern can have latency between fault & repair

Effects Overview

- Primary Concern is Heavy Ions & high energy protons
- All modern computer electronics experience TID and will eventually go out
- Heavy Ions causing SEEs cannot be stopped and an architectural approach is used to handle them.

FPGAs are Uniquely Susceptible

- 1. Total Ionizing Dose
	- o All gates and memory cells are susceptible to TID due to high energy protons
- 2. Single Event Effects
	- o SETs/SEUs in the logic blocks
	- o SETs in the routing
	- o SEUs in the configuration memory for the logic blocks (SEFI)
	- o SEUs in the configuration memory for the routing (SEFI)

Radiation Strikes in the Circuit Fabric

(Logic + Routing)

Radiation Strikes in the Configuration Memory

(Logic + Routing)

What is needed for FPGA-Based Reconfigurable Computing

- 1. SRAM-based FPGAs
	- o To support fast reconfiguration
- 2. A TID hardened fabric
	- o Thin Gate Oxides to avoid hole trapping and threshold shifting (inherent in all processes)
	- o Radiation Hardened by Design to provide SEL immunity (rings, layout, etc…)

Does This Exist?

- 1. Yes, Xilinx Virtex-QV Space Grade FPGA Family
	- \circ TID Immunity > 1Mrad
	- o RHBD for SEL immunity
	- o CRC in configuration memory

The Final Piece is SEE Fault Mitigation due to Heavy Ions

- SEU will happen due to heavy ions, nothing can stop this.
- A computer architecture that expects and response to faults is needed.

A Many-Tile Architecture

- The FPGA is divided up into *Tiles*
- A Tile is a quantum of resources that:
	- o Fully contains a system (e.g., processor, accelerator)
	- \circ Can be programmed via partial reconfiguration (PR)

Fault Tolerance

- 1. TMR + Spares
- 2. Spatial Avoidance and Background Repair
- 3. Scrubbing

16 MicroBlaze Soft Processors on a Virtex-6

1. TMR + Spares

- 3 Tiles run in TMR with the rest reserved as spares.
- In the event of a fault, the damaged tile is replaced with a spare and foreground operation continues.

2. Spatial Avoidance & Repair

- The damaged Tile is "repaired" in the background via Partial Reconfiguration.
- The repaired tile is reintroduced into the system as an available spare.

3. Scrubbing

- A traditional scrubber runs in the background.
- Either blind or read-back.
- PR is technically a "blind scrub", but of a particular region of the FPGA.

Shuttle Flight Computer (TMR + Spare)

Why do it this way?

With Spares, it basically becomes a flow-problem:

- \circ If the repair rate is faster than the incoming fault rate, you're safe.
- \circ If the repair rate is slightly slower than the incoming fault rate, spares give you additional time.
- o The additional time can accommodate varying flux rates.
- o Abundant resources on an FPGA enable dynamic scaling of the number of spares. (e.g., build a bigger tub in real time)

Practical Considerations

- Foreground operation can continue while repair is conducted in the background. Since scrubbing/PR is typically slower than reinitializing a tile, foreground "down time" is minimized.
- Using PR tiles, the system doesn't need to track the exact configuration memory addresses. Partial bit streams contain all the necessary information about a tile configuration.
- PR of a tile also takes care of both SEUs in the circuit fabric & configuration SRAM so the system doesn't care which one occurred.
- The "spares" are held in reset to reduce power. This is as opposed to running in N-MR with every tile voting.

Modeling Our Approach

- We need to compare our approach to a traditional TMR+scrubbing system
- We use a Markov Model to predict *Mean-Time-Before-Failure*
	- o *16 tile MicroBlaze system on Virtex-6 (3+13)*
	- \circ λ is fault rate
	- o *μ* is repair rate

Modeling Our Approach: Fault & Repair Rates

Fault Rate ()

- Derived from CREME96 tool for 4 different orbits
- Used LET fault data from V4

ORBITAL FAULT RATES FROM CREME96, IN FAULTS/DEVICE/SECOND

Repair Rate (μ)

- Measured empirically in lab on V6 system

FPGA-Based Radiation Tolerant Computing

×

Modeling Our Approach: Results

Baseline System
 Proposed System

MTBF FOR TMR+SCRUBBING+SPARES SYSTEM (IN SECONDS)

Improvement

Let's Build It

• Xilinx Evaluation Platforms (Virtex 4/5/6) for Lab Testing

• Custom Virtex-6 platform for Flight Testing

Let's Fly It

- Local Balloon Flights (MSGC Borealis)
- HASP Program
- Suborbital Vehicle

-4 Flights in MT to 100k ft in 2011/12 -Thermal evaluation of form-factor

- 1st test flight in Sept-12 - 2nd test flight planned Sept-13

- Payload design training (June-12) - Flight planned 2013

Conclusion

What is Missing

- Faults in the routing
- MBUs
- Addressing Single-Point-of-Failure

What's Next

- Collect flight data
- Address above mentioned issues

Questions?

References

Content

- "Space Transportation Costs: Trends in Price Per Pound to Orbit 1990-2000. Fultron Inc Technical Report., September 6, 2002. Sammy Kayali, "Space Radiation Effects on Microelectronics", JPL, [Available Online]: [http://parts.jpl.nasa.gov/docs/Radcrs_Final.pdf.](http://parts.jpl.nasa.gov/docs/Radcrs_Final.pdf)
- Holmes-Siedle & Adams, "Handbook of Radiation Effects", 2nd Edition, Oxford Press 2002.
- Thanh, Balk, "Elimination and Generation of Si-Si02 Interface Traps by Low Temperature Hydrogen Annealing", Journal of Electrochemical Society on Solid-State Science and Technology, July 1998.
- Sturesson TEC-QEC, "Space Radiation and its Effects on EEE Components", EPFL Space Center, June 9, 2009. [Available Online]: [http://space.epfl.ch/webdav/site/space/shared/industry_media/07%20SEE%20Effect%20F.Sturesson.pdf](http://space.epfl.ch/webdav/site/space/shared/industry_media/07 SEE Effect F.Sturesson.pdf)
- Lawrence T. Clark, Radiation Effects in SRAM: Design for Mitigation", Arizona State University, [Available Online]: <http://www.cmoset.com/uploads/9B.1-08.pdf>
- K. Iniewski, "Radiation Effects in Semiconductors", CRC Press, 2011.

Images

- If not noted, images provided by www.nasa.gov or MSU
- Displacement Image 1: Moises Pinada, http://moisespinedacaf.blogspot.com/2010_07_01_archive.html
- Displacement Image 2/3: Vacancy and divacancy (V-V) in a bubble raft. Source: University of Wisconsin-Madison
- SRAM Images: Kang and Leblebici, "CMOS Digital Integrated Circuits" 3rd Edition. McGraw Hill, 2003
- SEB Images: Sturesson TEC-QEC, "Space Radiation and its Effects on EEE Components", EPFL Space Center, June 9, 2009.
- FPGA Images: www.xilinx.com, www.altera.com
- RHBD Images: Giovanni Anelli & Alessandro Marchioro, "The future of rad-tol electronics for HEP", CERN, Experimental Physics Division, Microelectronics Group, [Available Online]:

