DESIGN AND IMPLEMENTATION OF A FUZZY LOGIC-BASED VOLTAGE CONTROLLER FOR VOLTAGE REGULATION OF A SYNCHRONOUS GENERATOR

Brock J. LaMeres

Sponsor: National Science Foundation Faculty Advisor: Dr. M.H. Nehrir

> Electrical and Computer Engineering Montana State University

Project Statement

• To develop an automated fuzzy logic controller to regulate the output voltage of a synchronous generator under varying loads.

Fuzzy Logic Control of a Synchronous Generator

Fuzzy Logic Controller

• This will increase or decrease the field current of the synchronous generator depending on the:

Voltage Error

Rate of Change of Voltage Error

Fuzzy Logic Controller

Fuzzy Logic Strategy

Fuzzifier (Linguistic Labels)

- NL Negative Large
- NM Negative Medium
- NS Negative Small
- ZE Zero
- **PS** Positive Small
- **PM Positive Medium**
- **PL** Positive Large

Input Membership Functions

Output Membership Functions

Fuzzifier

Fuzzy Logic Control Rules

- The *intelligence* of a fuzzy logic controller comes from its programming in the form of Control Rules.
- A more experienced programmer will develop a more efficient controller.
- Control rules are linguistic statements describing a desired output from a certain set of inputs.

Ex) if the voltage error is negative large and the rate of change of voltage is negative large, then the field current is positive large

Fuzzy Logic Control Rules

• Voltage Error

		NL	NM	NS	ZE	PS	PM	PL
Del Error	NL	PL	PL	PL	PL	PM	PS	ZE
	NM	PL	PL	PM	PM	PS	ZE	NS
	NS	PL	PM	PS	PS	NS	NM	NL
	ZE	PL	PM	PS	ZE	NS	NM	NL
	PS	PL	PM	PS	NS	NS	NM	NL
	PM	PM	ZE	NS	NM	NM	NL	NL
	PL	ZE	NS	NM	NL	NL	NL	NL

Defuzzification

(Weighted Average)

$$Z_{O} = \frac{Z_{1} \cdot h_{1} + Z_{2} \cdot h_{2} + \dots + Z_{n} \cdot h_{n}}{h_{1} + h_{2} + \dots + h_{n}}$$

Experimental Setup

- Alternator
- Three Phase Load
- Step Down and Isolation
- DSP (A/D, D/A)
- Isolation Amplifier
- Power Amplifier

Alternator

- 5kVA Alternator.
- Induction motor serves as prime mover.

Three Phase Load

Delta FormationR, RC, & RL

Step Down & Isolation

• Probe Master 20/1 Attenuator

• Provides analog saturation around 160 Vrms.

DSP (Digital Signal Processor)

- 40 MHz processor.
- 12 bit signed A/D converter with 10 channels of sample and hold. (-10 < Vin < +10)
- Two 12 bit signed D/A converters. (-10 < Vout < +10)

Isolation Amplifier

- Provides a way to link a fixed ground to a floating ground.
- Isolates the DSP from the high voltage associated with the power amplifier.

Power Amplifier

Will take in a voltage from 0
to +5 volts and in turn, supply
a voltage of 30 to 160 volts to
the field of the generator.

Closed Loop Control System

Experimental Results

- The controller was tested under five different situations:
 - a light resistive load.
 - a heavy resistive load.
 - a capacitive load.
 - an inductive load.
 - generator start-up.

Resistive Load (20%)

Resistive Load (85%)

Capacitive Load

Inductive Load (20%)

Generator Start-Up

Conclusion

- The fuzzy logic controller performed exceptionally well.
- A high power system was linked to a low power system in a single closed control loop.
- A DSP was used as the control engine for a power application.

Project Highlight

Published in April's issue of "IEEE Computer Applications In Power"

DESIGN AND IMPLEMENTATION OF A FUZZY LOGIC-BASED VOLTAGE CONTROLLER FOR VOLTAGE REGULATION OF A SYNCHRONOUS GENERATOR

Brock J. LaMeres

Electrical and Computer Engineering Montana State University

Questions?