Encoding-based Minimization of Inductive Cross-talk for Off-Chip Data Transmission

Motivation

- Power delivery is the biggest challenge facing designers entering DSM
 - The IC core current continues to increases (P4 = 80Amps).
 - The package interconnect inductance limits instantaneous current delivery.
 - The inductance leads to ground and power supply bounce.
- SSN on signal pins is the leading cause of inter-chip bus failure
 - Ground/power supply bounce causes unwanted switching.
 - Mutual Inductive cross-talk causes edge degradation which limits speed.
 - Mutual Inductive cross-talk causes glitches which results in unwanted switching.
- Aggressive package design helps, but is too expensive:
 - Flip-Chip technology can reduce the interconnect inductance.
 - Flip-Chip requires a unique package design for each ASIC.
 - This leads to longer process time which equals cost.
 - 90% of ASIC design starts use wire-bonding due to its low cost.
 - Wire-bonding has large parasitic inductance that must be addressed.

Our Solution

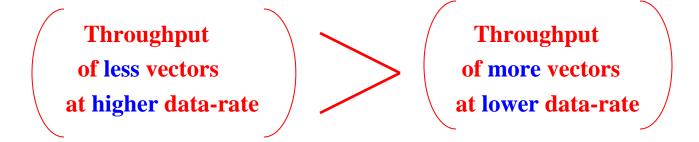
"Encode Off-Chip Data to Avoid Inductive Cross-talk"

Avoid the following cases:

1) Excessive switching in the same direction = re

= reduce ground/power bounce

2) Excessive X-talk on a signal when switching


= reduce edge degradation

3) Excessive X-talk on signal when static

= reduce glitching

Our Solution

- This results in:
- 1) A subset of vectors is transmitted that avoids inductive X-talk.
- 2) The off-chip bus can now be ran at a higher data rate.
- 3) The subset of vectors running faster can achieve a higher throughput over the original set of vectors running slower.

Agenda

1) Inductive X-talk:	5%
2) Terminology:	5%
3) Methodology:	50%
4) Experimental Results:	30%
5) Conclusion:	10%

1) Inductive X-Talk

Supply Bounce

•The instantaneous current that flows when signals switch induces a voltage across the inductance of the power supply interconnect following:

$$V_{bnc} = L \cdot \left(\frac{di}{dt}\right)$$

•When more than one signal returns current through one supply pin, the expression becomes:

$$V_{bnc} = L \cdot \sum_{i} \left(\frac{di}{dt} \right)$$

NOTE: Reducing the number of signals switching in the same direction at the same time will reduce the supply bounce.

1) Inductive X-Talk

Glitching

• Mutual Inductive coupling from neighboring signals that are switching cause a voltage to induce on the victim that is static:

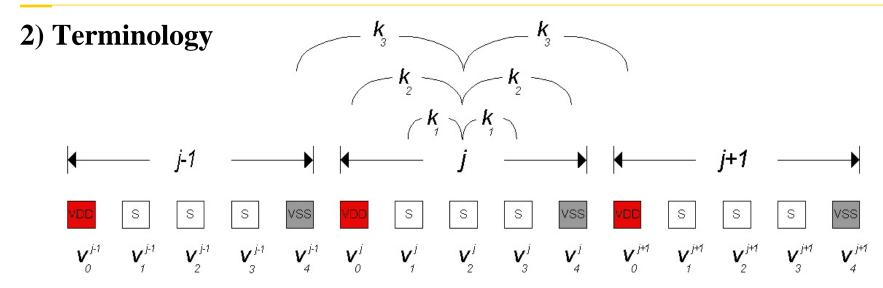
$$V_{glitch} = M_{1k} \cdot \left(\frac{di_k}{dt}\right)$$

•The net coupling is the summation from all neighboring signals $(k_1, k_2, k_3, ...)$ that are switching:

$$V_{glitch} = \sum_{1}^{k} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

NOTE: The mutual inductive coupling can be canceled out when two neighbors of equal k switch in opposite directions.

1) Inductive X-Talk


Edge Degradation

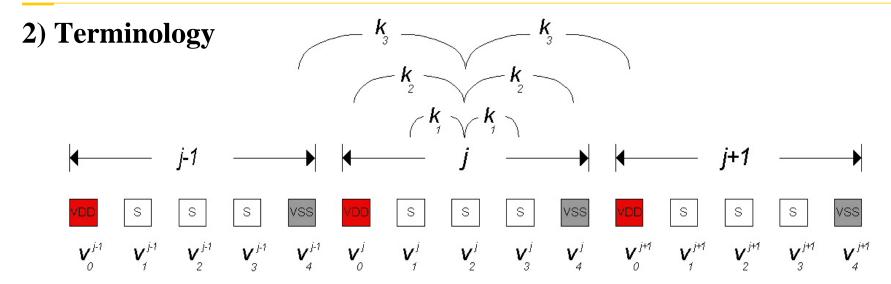
• Mutual Inductive coupling from neighboring signals that are switching cause a voltage to induce on the victim that is also switching. This follows the same expression as glitch coupling:

$$V_{glitch} = \sum_{1}^{k} M_{1k} \cdot \left(\frac{di_{k}}{dt}\right)$$

NOTE: The mutual inductive coupling can be canceled out when two neighbors of equal k switch in opposite directions.

NOTE: Mutual Coupling can be encoded so as to *help* the transition resulting in a faster rise-time.

Define the following:


- n = width of the buswhere each bus consists of n-2 signalsand 1 VDD and 1 Vss.
- j = the segment consisting of an n-bit bus.

 j_i is the segment under consideration.

 j_{i-1} is the segment to the immediate left.

 j_{i+1} is the segment to the immediate right.

 each j segment has the same VDD/Vss placement.

Define the following:

 v_i = the transition (vector) that the signal is undergoing. where

 $v_i = 1$ = rising edge

 $v_i = -1 =$ falling edge

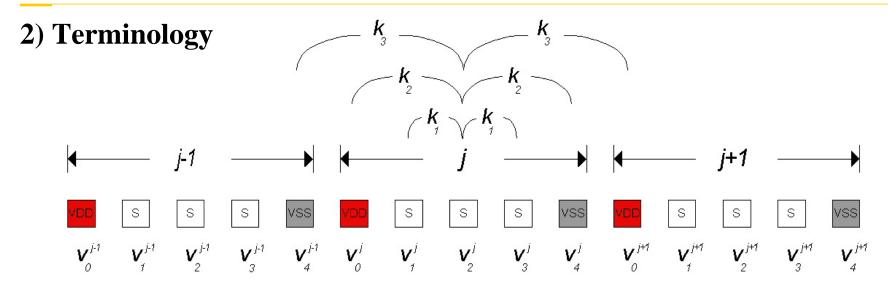
 $v_i = 0$ = static edge

2) Terminology

Define the following coding constraints:

Supply Bounce

if vi is a supply pin, the total bounce on this pin is bounded by P_{bnc} .

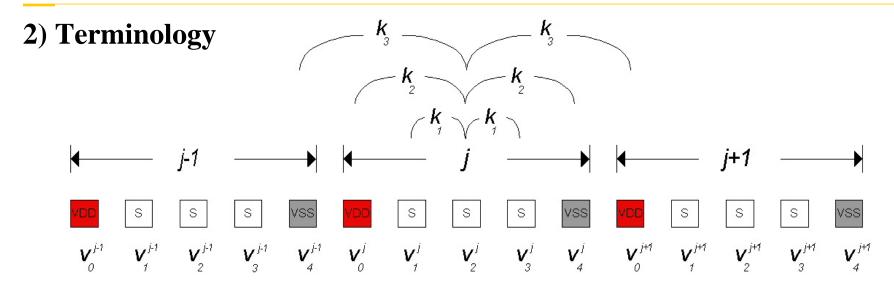

Phnc is a user defined constant.

Glitching

if vi is a signal pin and is static (vi=0), the total magnitude of the glitch from switching neighbors should be less than P0. P0 is a user defined constant.

Edge Degradation

if vi is a signal pin and is switching (vi=1/-1), the total magnitude of the coupling from switching neighbors should be greater than P1. This coupling should not hurt (should aid) the transition. P1 is a user defined constant.

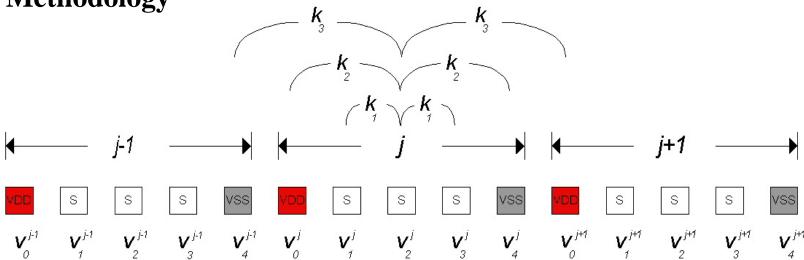


Define the following:

 $k_i =$ the mutual inductive coupling coefficient

$$M_{1k} = k_{1k} \cdot \sqrt{L_1 \cdot L_k}$$

p = how far away to consider coupling (ex., p=3, consider k_1 , k_2 , and k_3 on each side of the victim)



Define the following:

k = the number of j segments in the total bus.

 $\alpha = \frac{\text{Supply / Signal Ratio}}{(\text{ex., } n=5 \text{ with } 1 \text{ Vpd and } 1 \text{ Vss, this would have } \alpha = 5/2)}$

3) Methodology

- •For each pin v_i^j within segment j, we will write a series of constraints that will bound the inductive cross-talk magnitude.
- •The constraints will differ depending on whether v_i^j is a signal or power pin.
- •The coupling constraints will consider signals in adjacent segments (j+1, j-1) depending on p.

3) Methodology – Signal Pin Constraints

Glitching: coupling is bounded by $P\theta$

Example:

 $v_2^j = 0$, and p = 3. This means the three adjacent neighbors on either side of v_2^j need to be considered $(v_4^{j-1}, v_0^j, v_1^j, v_3^j, v_4^j, v_0^{j+1})$.

Note the *modulo n* arithmetic allows consideration of adjacent segments with one mathematical framework.

$$v_{2}^{j} = 0 \text{ (static)}$$

$$-P_{0} \le k_{3} \cdot (v_{4}^{j-1}) + k_{2} \cdot (v_{0}^{j}) + k_{1} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{3}^{j}) + k_{2} \cdot (v_{4}^{j}) + k_{3} \cdot (v_{0}^{j+1}) \le P_{0}$$

Now the constraint equation is evaluated for each possible transition and the transitions that violate the constraint are eliminated.

3) Methodology – Signal Pin Constraints

Edge Degradation: coupling is bounded by *P1* and *P-1*

Example:

 $v_2^j = 1$ or -1, and p = 3. This means the three adjacent neighbors on either side of v_2^j need to be considered $(v_4^{j-1}, v_6^j, v_1^j, v_3^j, v_4^j, v_6^{j+1})$.

$$v_2^{j} = 1 \text{ (rising)}$$

$$k_3 \cdot (v_4^{j-1}) + k_2 \cdot (v_0^{j}) + k_1 \cdot (v_1^{j}) + k_1 \cdot (v_3^{j}) + k_2 \cdot (v_4^{j}) + k_3 \cdot (v_0^{j+1}) \ge P_1$$

$$v_{2}^{j} = -1 \text{ (falling)}$$

$$k_{3} \cdot (v_{4}^{j-1}) + k_{2} \cdot (v_{0}^{j}) + k_{1} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{3}^{j}) + k_{2} \cdot (v_{4}^{j}) + k_{3} \cdot (v_{0}^{j+1}) \le P-1$$

Again, the constraint equations are evaluated for each possible transition and the transitions that violate the constraints are eliminated.

3) Methodology – Power Pin Constraints

Supply Bounce: coupling is bounded by *Pbnc*

Example:

 v_0^j =VDD or VSS. The total number of switching signals that use v_0^j to return current must be considered. Due to symmetry of the bus definition, signal pins will always return current through two supply pins. i.e., $(v_0^{j-1}$ and $v_0^j)$ or $(v_0^j$ and $v_0^{j+1})$. This results in the self inductance of the return path being divided by 2.

$$v_0^j = V_{DD}$$
 (L/2)·(# of v_i^j pins that are 1) $\leq P_{bnc}$

$$v_{4}^{j} = Vss$$
 (L/2)·(# of v_{i}^{j} pins that are -1) $\leq Pbnc$

3) Methodology – Constructing Legal Vectors Sequences

- For each bit in the j segment bus, constraints are written.
- If the pin is a signal, 3 constraint equations are written;
 - $v_0^{\ j} = 0$, the bit is static and a glitching constraint is written
 - $v_0^j = 1$, the bit is rising and an edge degradation constraint is written.
 - $v_0^{\ j}$ = -1, the bit is **falling** and an *edge degradation* constraint is written.
- If the pin is VDD, 1 constraint equation is written to avoid supply bounce.
- If the pin is Vss, 1 constraint equation is written to avoid ground bounce.

3) Methodology – Constructing Legal Vectors Sequences

• This results in the total number of constraint equations being written is:

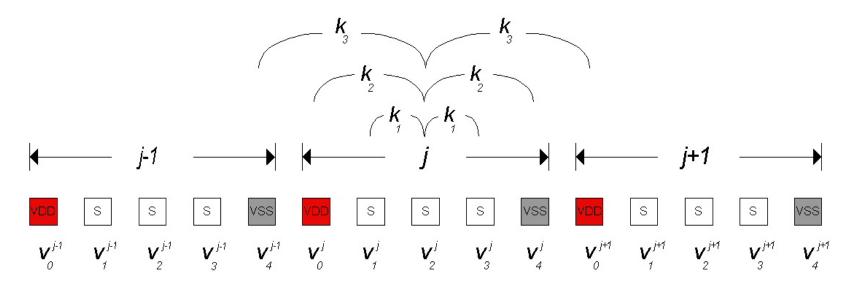
$$(3\cdot n-4)$$

• Each equation must be evaluated for each possible transition to verify if the transition meets the constraints. The total number of transitions that are evaluated depends on n and p:

$$3^{(n+2 \cdot p - 6)}$$

3) Methodology – Constructing the CODEC

- The remaining legal transitions are used to create the CODEC.
- Each of the 2ⁿ States will potentially have a set of legal *outgoing* transitions that it may take to reach another State.
- Each of the 2ⁿ States will potentially have a set of legal *incoming* transitions that other States use to reach it.
- The total number of remaining legal transitions will depend on how aggressive the user-defined constants are chosen (P0, P1, P-1, Pbnc)


3) Methodology – Constructing the CODEC

- For each State, the legal transitions are used to create a subset of possible states that it can reach and also return from.
- The States that form the largest possible effective bus size with the largest number of transitions within the group form the final encoded bus.
- •The circuitry to map the original possible states into the new subset of states is synthesized to implement the encoder/decoder.

4) Experimental Results – 3 Signal Pins

Example Bus:

$$n=5, k=3, \alpha=5/2, p=2$$

Aggressive Encoding Non-Aggressive Encoding

Po, P1, P-1, Pbnc
5% of VDD
10% of VDD

4) Experimental Results – Possible Transitions

Possible Transitions = $3^{(n+2p-6)} = 27$

Transition	<u>V1</u>	<u>V2</u>	<u>V3</u>
1	0	0	0
2	0	0	1
3	0	0	-1
4	0	1	0
5	0	1	1
6	0	1	-1
7	0	-1	0
8	0	-1	1
9	0	-1	-1
10	1	0	0
11	1	0	1
12	1	0	-1
13	1	1	0
14	1	1	1
15	1	1	-1
16	1	-1	0
17	1	-1	1
18	1	-1	-1

Transition	<u>V1</u>	<u>V2</u>	<u>V3</u>
19	-1	0	0
20	-1	0	1
21	-1	0	-1
22	-1	1	0
23	-1	1	1
24	-1	1	-1
25	-1	-1	0
26	-1	-1	1
27	-1	-1	-1

4) Experimental Results – Constraint Equations

of Constraints =
$$(3n - 4) = 11$$

1)
$$v_0^j = V_{DD} \rightarrow (L/2) \cdot (\# \text{ of } v_i^j \text{ pins that are } 1) \leq P_{bnc}$$

2)
$$\mathbf{v}_{1}^{\mathbf{j}} = 1 \rightarrow k_{1} \cdot (\mathbf{v}_{2}^{\mathbf{j}}) + k_{2} \cdot (\mathbf{v}_{3}^{\mathbf{j}}) \geq \mathbf{P}_{1}$$

3)
$$\mathbf{v}_{1}^{\mathbf{j}} = -1$$
 \rightarrow $k_{1} \cdot (\mathbf{v}_{2}^{\mathbf{j}}) + k_{2} \cdot (\mathbf{v}_{3}^{\mathbf{j}}) \leq \mathbf{P}_{-1}$

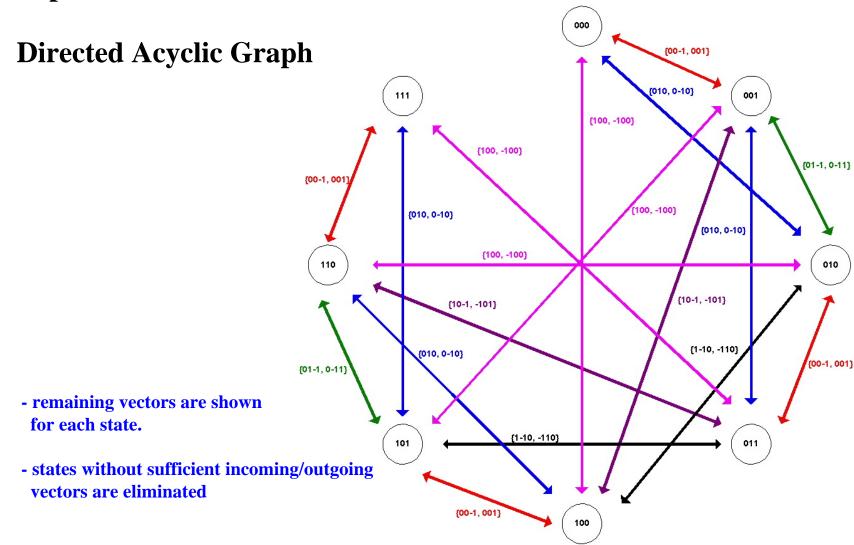
4)
$$\mathbf{v}_{1}^{\mathbf{j}} = \mathbf{0}$$
 \rightarrow $-\mathbf{P}_{0} \leq k_{1} \cdot (\mathbf{v}_{2}^{\mathbf{j}}) + k_{2} \cdot (\mathbf{v}_{3}^{\mathbf{j}}) \leq \mathbf{P}_{0}$

5)
$$v_2^j = 1 \rightarrow k_1 \cdot (v_1^j) + k_1 \cdot (v_3^j) \ge P_1$$

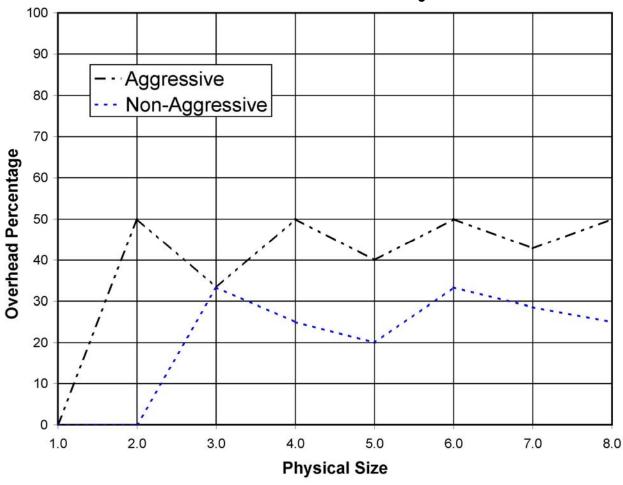
6)
$$\mathbf{v}_{2}^{\mathbf{j}} = -1$$
 \rightarrow $k_{1} \cdot (\mathbf{v}_{1}^{\mathbf{j}}) + k_{1} \cdot (\mathbf{v}_{3}^{\mathbf{j}}) \leq \mathbf{P}_{-1}$

7)
$$v_{2}^{j} = 0$$
 \rightarrow $-P_{0} \le k_{1} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{3}^{j}) \le P_{0}$
8) $v_{3}^{j} = 1$ \rightarrow $k_{2} \cdot (v_{1}^{j}) + k_{1} \cdot (v_{2}^{j}) \ge P_{1}$

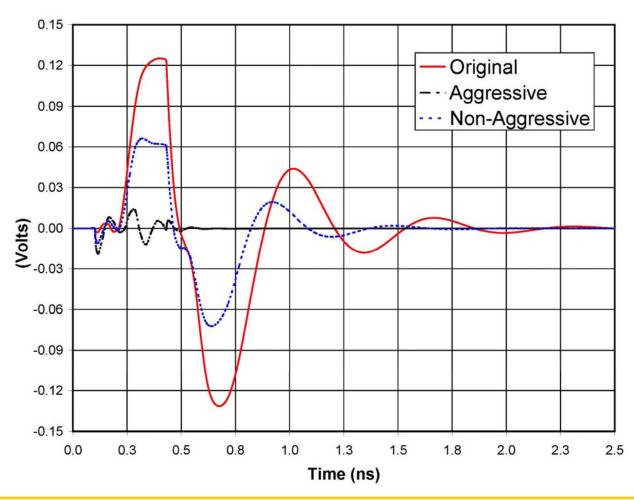
8)
$$\mathbf{v_3}^{\mathbf{j}} = 1 \longrightarrow k_2 \cdot (\mathbf{v_1}^{\mathbf{j}}) + k_1 \cdot (\mathbf{v_2}^{\mathbf{j}}) \ge \mathbf{P}_1$$

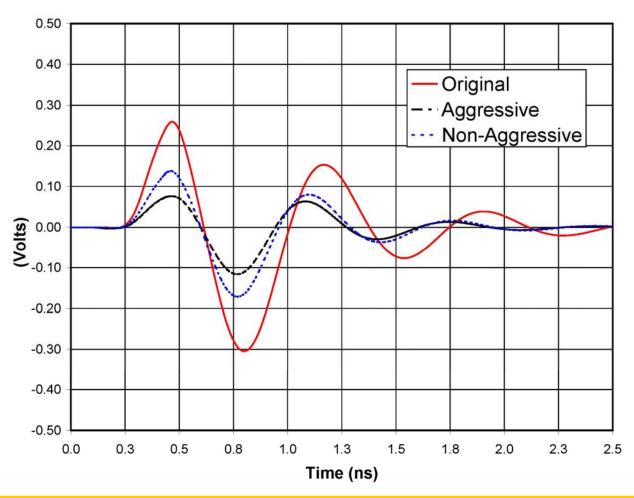

9)
$$\mathbf{v}_3^{\mathbf{j}} = -1$$
 \rightarrow $k_{2^{\bullet}}(\mathbf{v}_1^{\mathbf{j}}) + k_{1^{\bullet}}(\mathbf{v}_2^{\mathbf{j}}) \leq \mathbf{P}_{-1}$

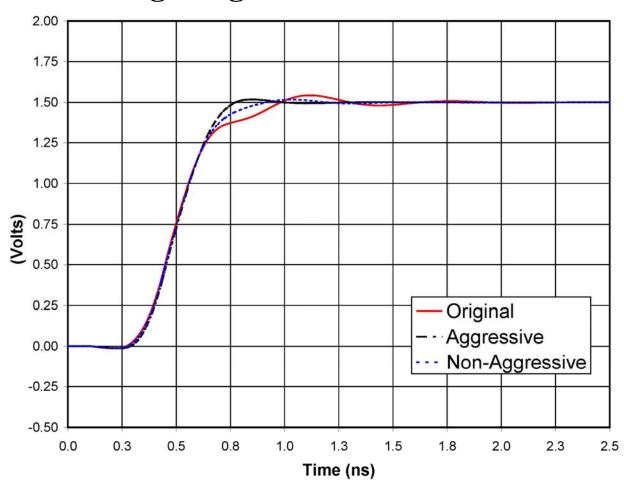
10)
$$\mathbf{v_3}^{\mathbf{j}} = \mathbf{0}$$
 \rightarrow $-\mathbf{P_0} \leq k_2 \cdot (\mathbf{v_1}^{\mathbf{j}}) + k_1 \cdot (\mathbf{v_2}^{\mathbf{j}}) \leq \mathbf{P_0}$


11)
$$v_4^j = Vss \rightarrow (L/2) \cdot (\# \text{ of } v_i^j \text{ pins that are -1}) \leq P_{bnc}$$

Transitions Eliminated due to Rule Violations


Rule(s) Violated			
Transition	<u>Aggressive</u>	Non Aggressive	
011	violates 1,4	-	
0-1-1	violates 4,11	-	
101	violates 1,7	-	
110	violates 1,10	-	
111	violates 1,2,5,8	violates 11	
11-1	violates 1	-	
1-11	violates 1	-	
1-1-1	violates 11	-	
-10-1	violates 7,11	-	
-111	violates 1	-	
-11-1	violates 11	-	
-1-10	violates 10,11	-	
-1-11	violates 11	-	
-1-1-1	violates 3,6,9,11	violates 1	


DAG Efficiency


Ground Bounce Simulation

Glitch Simulation

Edge Degradation Simulation

4) Experimental Results – CASE 2: Variable di/dt

- di/dt was swept for both the non-encoded and encoded configuration.
- the maximum di/dt was recorded that resulted in a failure.
- a failure was defined as 5% of VDD
- the maximum di/dt was converted to data rate and throughput.

	Non-Encoded	Encoded
Maximum di/dt:	13.3 MA/s	37 MA/s
Maximum data-rate per pin:	222 Mb/s	617 Mb/s
Effective bus width:	3	2
Total Throughput:	666 Mb/s	1234 Mb/s
Improvement	-	85%
Encoder Overhead	-	33%

5) Conclusion

- Using a single mathematical framework, inductive X-talk constraints can be written that consider supply bounce, glitching, and edge degradation.
- This technique can be used to encode off-chip data transmission to reduce inductive X-talk to acceptable levels.
- It was demonstrated that even after reducing the effective bus size, the improvement in per pin data-rate resulted in an *increase* in throughput compared to a non-encoded bus.

Future Work

1) Power Reduction

- A large percentage of the power (25%-50%) is consumed in the output stages.
- this technique can be used to limit the amount of simultaneous switching to reduce power.

2) Programmable CODECs

- This CODEC could be implemented as a *programmable* coding circuit prior to the tapered output drivers.
- This would allow one generic circuit to reside on the die and compensates for any style of package that is used.