3D/SiP Advanced Packaging Symposium

Session II: Wafer Level Integration & Processing April 29, 2008 Durham, NC

Off-Chip Coaxial to Coplanar Transition Using a MEMS Trench

Monther Abusultan & Brock J. LaMeres Montana State University Bozeman, MT

Problem Statement

• System Performance in VLSI Designs is Limited by Package Interconnect

1) Signal Path Reflections

- Unwanted Switching
- Edge Speed Degradation

2) Signal Coupling

- NE/FE Cross-talk
- Power Supply Droop
- Ground Bounce
- On-Chip Performance is outpacing Off-Chip interconnect

1) Emerging problem of getting high speed signals from chip-to-chip

2) This problem will continue as transistors keep getting faster

Why is packaging limiting performance?

Today's Package Interconnect Looks Inductive

• Today's Package Impedance is <u>Not Controlled</u> or <u>Shielded</u>

The Trend Toward System in Package (SiP)

- Moving more functionality on package reduces the amount of times a signal needs to traverse level 2 interconnect (package-to-PCB)
- Integrating functionality onto a single IC has limitations:

- Reduced yield, suboptimal material selection (CMOS vs. GaAs vs. SiGe)

- Integrating multiple die onto the same package with wire bonds is an optimal balance
- However, we're back to the problem of <u>unshielded</u>, <u>uncontrolled</u> wire bonds

www.amkor.com

Proposed Solution – A New Chip-to-Chip Interconnect Technology

Off-Chip Coaxial Launch

- Exploit Advances in MEMS process technology
- Target System in Package (SiP) applications

Proposed Solution – A New Chip-to-Chip Interconnect Technology

Application

- High speed chip-to-chip signals require controlled impedance and shielding
- Additional process step converts perimeter wire-bond pads to coaxial launch.

- Step 1: Design, Model, and Fabricate interconnection between side-by-side die
- Step 2: Investigate Vertically Stacked Die Interconnect

Proposed Solution – A New Chip-to-Chip Interconnect Technology

• Processing

- Etch a trench into the Silicon substrate to hold the coaxial cable
- The center conductor is connected to a signal trace on-chip
- A coplanar transmission line is used on-chip to provide connection to the signal and to the coaxial ground shield.

Geometric Dependencies - Coaxial Line

- The coax outer diameter is the key dimension
- Our design evaluations Semi-Rigid Coax's from Micro-Coax (UT-013, UT-020)
- 50Ω impedance requirement sets coaxial dimensions
- Extension diameters dictated by mechanical reliability

$$Z_{0_{coax}} = \frac{138}{\varepsilon_r} \cdot \log\left(\frac{D_{od}}{D_{cc}}\right)$$

Geometric Dependencies - Coplanar Line

- The ground separation is dictated by the outer diameter of the coaxial line
- 50Ω impedance set by material properties & signal trace width

Imaginary Impedance due to Lossy Semiconductor Material
Potential for higher-order modes in addition to TEM

Geometric Dependencies - Trench

- The trench must be wide enough to accept the coaxial outer diameter
- The depth must place the coaxial center conductor on top of the coplanar signal trace
- Using inscribed octagonal geometries sets width of trench
- Anisotropic etch rate dictates angle of trench sidewall.

$$W_{t_{bot}} = D_{oc} \cdot \tan(22.5)$$
$$H_{tsw} = \frac{H_t}{\sin(45)}$$

Į

$$W_{tsw} = \frac{H_t}{\tan(45)}$$

$$W_{t_{top}} = W_{t_{bot}} + 2 \cdot W_{tsw}$$

$$H_t = \left(\frac{D_{oc}}{2}\right) - \left(\frac{D_{cc}}{2}\right) - T_{ms}$$

Geometric Dependencies – Channel Spacing

- Spacing of adjacent trenches must accommodate coax protrusion

Geometric Dependencies – Transition Region

- Length of sidewall dictated by anisotropic etch rate.
- Overlapping lengths dictated by mechanical reliability

Summary of Dimensions

- 2 Micro-Coax's are evaluated (UT-013, UT-020)
- Each coax size influences the trench and coplanar transmission line dimensions

Region	Parameter	Units	Coaxia	al Line
			UT-013	UT-020
Coaxial Structure	D _{oc}	μm	330	584
	D_{od}	μm	254	419
	D_{cc}	μm	79	127
Coplanar Structure	T_{sig}	μm	1	1
	T _{ox}	μm	0.8	0.8
	W _{sig}	μm	239	446
	W_{gnd}	μm	100	100
	S _{copl}	μm	55	90
	S _{ss}	μm	634	916
Trench Structure	W _{ttop}	μm	349	626
	W _{tbot}	μm	150	228
	W _{tsw}	μm	100	169
	H_{tsw}	μm	141	239
Transition Region	L _{trench}	μm	1100	1170
	L _{dext}	μm	500	500
	L _{sw}	μm	100	170
	L _{cext}	μm	1000	1000
	L _{ccov}	μm	900	831

Impedance Discontinuities

- Between the coax and coplanar T-lines, there are regions of impedance discontinuities
- These add reflections and risetime degradation between the two *ideal* transmission line structures (i.e., the coaxial and coplanar lines)

Modeling Approach

EM Field Solvers

- Due to the complexity of the structure, a field solver is used to extract the characteristic impedance (Z_0) and propagation constant (g)
- Z_0 and G are complex for signal propagation on the integrated circuit due to the use of a semiconductor substrate material.
- Z_0 is real inside of the coaxial transmission line
- We used *Electromagnetic Design Systems (EMDS)* from *Agilent Technologies* to perform 2D and 3D field simulations

Modeling Approach

Our Approach

- 1) Extract Z_0 and g for each different Cross-Section within the transition using a 2D simulation
- 2) Import parameters into SPICE to perform transient simulations on the structures ability to transmit high speed signals

Modeling Results (XC7) XC7 **Field Solver Results** $Z_0 = 50 + j0$ g = 0 + j296 Er Er2 GND GND SIG Symmetry Axis **Electric Fields Magnetic Fields**

Modeling Results

Field Solver Results Summary

Region	Zo	g	
XC1	52 + j26	305 + j615	
XC2	50 + j25	299 + j604	
XC3	114 + j3	10 + j269	
XC4	128 + j1	4 + j239	
XC5	134 + j1	3 + j229	
XC6	111 + j1	5 + j276	
XC7	50 + j0	0 + j296	
XC8	50 + j0	0 + j296	

Electric Fields

Magnetic Fields

Electrical Evaluation (Comparison to Wirebond)

- Comparing to a chip-to-chip application where coplanar lines are used on-chip (35ps risetime)

Signal Path 1: Using a G/S/G wirebond interconnect structure Signal Path 2: Using the new coaxial launch structure

Spatial Evaluation

Wire bond Comparison

- Is this interconnect comparable in size to that of the pads for wire bonding?
- We evaluate against 100µm x 100µm pad requirements for wire bond in G-S-G configuration with 100µm spacing

Results

- Wire Bond Pads for G-S-G:

$$= 3^{*}(W_{pad}) + 2^{*}(W_{space})$$

= 3*(100µm) + 2*(100µm) = 500 µm

- Coaxial Launch for G-S-G:

 $= W_{ttop} + 2*W_{gnd} \\ = 349 \mu m + 2*100 \ \mu m = 549 \ \mu m$

Region	Parameter	Units	Coaxial Line	
			UT-013	UT-020
Coaxial Structure	D _{oc}	μm	330	584
	D_{od}	μm	254	419
	D_{cc}	μm	79	127
Coplanar Structure	T_{sig}	μm	1	1
	T _{ox}	μm	0.8	0.8
	W _{sig}	μm	239	446
¢	W _{gnd}	μm	100	100
	S _{copl}	μm	55	90
	S _{ss}	μm	634	916
Trench Structure	W _{ttop}	μm	349	626
	W _{tbot}	μm	150	228
	W _{tsw}	μm	100	169
	H _{tsw}	μm	141	239
Transition Region	L _{trench}	μm	1100	1170
	L _{dext}	μm	500	500
	L _{sw}	μm	100	170
	L _{cext}	μm	1000	1000
	L _{ccov}	μm	900	831

only 9.8% more area required

Electrical Evaluation (Parasitics)

Electrical Evaluation

- Interconnect comparison
 - \cdot Coax length = 3mm
 - \cdot Wire bond length = 3mm

Results

- Versus wire bond:

Inductance	reduced	by	57%
		·	

Impedance reduced by 66%

- Note: Interconnect is now *Shielded* and has *Controlled Impedance*

Parameter	Units	Wire Bond	Coaxial Line
L'	nH/m	569	242
C'	pF/m	26	97
Zo	Ω	148	50
L _{3mm}	nH	1.71	0.73
C _{3mm}	pF	0.08	0.29

Electrical Evaluation (TDR/TDT)

TDR/TDT Comparison of Interconnects

Electrical Evaluation (Eye Diagram)

Eye Diagrams of a 5Gb/s, PRBS for a Load Terminated System

Wire bond

Coplanar to Coax

Summary

1) A new SiP interconnect was presented and compared to current technology

- Coaxial to Coplanar launch using MEMS trench
- Selective processing for high-speed nets

2) Spatially this interconnect takes similar area requirements for G:S:G

3) Electrically this interconnect has the potential to perform faster

- Controlled impedance reduces reflections
- Shielded interconnect eliminates signal coupling

4) Next Steps

- Fabrication underway at Montana State
- Measurements on prototypes expected during summer of 2008

Questions?

