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Abstract  Hybridization with non-native species is a threat to many taxa, but hybrids can be 

difficult to identify based on morphology. Genetic data is useful for estimating the ancestry of 

admixed populations, and diallelic markers such as single nucleotide polymorphisms are popular 

for such applications. When taxa are evolutionarily well diverged, loci frequently become fixed 

for different alleles in each taxa, and the degree of genetic admixture between two taxa can be 

estimated by counting diagnostic alleles for each taxa. However, when there has been 

hybridization between more than two taxa, and loci have only two alleles, the origin of each 

allele cannot be assigned ambiguously to a taxon. In this note, I show how the expectation-

maximization algorithm can be used to solve this problem. A computer program for 

implementing this approach is available at 
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Invasive species are one of the greatest threats to global biodiversity (Vitousek et al. 1997). Of 

the many negative effects that non-native species can have on native taxa, hybridization and 

genetic introgression is one of the most pernicious (Rhymer and Simberloff 1996). Genetic 

introgression and outbreeding depression have contributed to the extirpation of many of plants 

and animals (Allendorf et al. 2001), and even small amounts of genetic admixture can 

substantially lower fitness in the wild (e.g., Muhlfeld et al. 2009). 

One of the challenges to managing species that interbreed in the wild is accurate 

identification of hybrids and admixed populations (Allendorf et al. 2001). When species are 

morphologically similar, this can be difficult, especially when hybrid individuals or populations 
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have had only a small genetic contribution from non-native taxa. For example, cutthroat trout 

(Oncorhynchus clarki) and rainbow trout (Oncorhynchus mykiss) readily interbreed in the wild 

(Benke 2002), and this introgression presents a serious threat to the persistence of cutthroat trout 

(e.g., Shepard et al. 2003). However, identifying rainbow/cutthroat hybrids using morphology is 

difficult—especially when only a small proportion of the ancestry of a hybrid cutthroat trout is 

from rainbow trout (Leary et al. 1996).  

Molecular markers offer a useful tool for accurately estimating the ancestry of hybrid 

individuals and populations. When F1-hybrids are fertile, and backcrosses of F1 hybrids to the 

native taxon are common, multiple loci must be used to estimate the ancestry of fish and 

populations. There are several types of molecular markers that can be used to this, and a variety 

of statistical methods available for conducting the analysis (e.g. Anderson and Thompson 2002, 

Pritchard et al. 2000), but when the species are evolutionarily well-differentiated, the simplest 

way to estimate the ancestry of potentially hybridized individuals to use taxon-specific 

diagnostic markers, and count the proportion of genes in an individual or population that are non-

native. Single nucleotide polymorphisms (SNPs) (Finger et al. 2009; Stephens et al. 2009) and 

insertion/deletions  (Ostberg and Rodriguez 2004) are popular for such applications, because 

diagnostic loci can be identified in which all individuals in the native taxon have one allele and 

all the individuals in the non-native taxon have an alternative allele. Finding such diagnostic loci 

is often not difficult, and the resulting data is unambiguous when two taxa are compared. 

However, when hybridization may have occurred between three or more taxa, diallelic loci can 

be difficult to interpret. An example illustrates the difficulty. 

Westslope cutthroat trout (Oncorhynchus clarki lewisi) are native to the Rocky 

Mountains of the northern United States. Yellowstone cutthroat trout (Oncorhynchus clarki 
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bouvieri) and rainbow trout have been extensively introduced throughout the range of westslope 

cutthroat trout, so that some populations have may contain ancestry from all three taxa. SNP data 

from a population of Westslope cutthroat trout in Yellowstone National Park (S. Kalinowski 

unpublished) contains such a mixture (Table 1). The ten individuals in the sample clearly show 

low levels of genetic introgression from Yellowstone cutthroat and rainbow trout. For example, 

Trout #1 has a Yellowstone cutthroat trout allele at Locus9, and Trout #2 has rainbow trout 

alleles at Locus2 and Locus3. The possibility of admixture among all three species leads to 

ambiguity in estimating the degree of hybridization among individuals. Trout #9 exemplifies the 

problem. This fish has Yellowstone cutthroat ancestry Locus8 and Locus9 and rainbow trout 

ancestry at Locus2. Given this complex ancestry, the genotype of Trout #9  at Locus1 (CC) is 

ambiguous. Both westslope and Yellowstone cutthroat trout should have a genotype of CC, so 

the ancestry of this fish cannot be estimated by simple gene counting. This problem extends to 

the sample as a whole. Given the ambiguity present in the diallelic loci, the frequency of 

westslope, Yellowstone, and rainbow alleles cannot be estimated by simply counting the number 

of alleles from each taxon. 
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Fortunately, there is a straightforward statistical solution to this problem. The 

expectation-maximization (EM) algorithm (Dempster et al. 1977) can be used to estimate the 

genetic composition of individuals and populations in the same manner as it is used to estimate 

the frequency of A, B, and O blood antigens (Ceppellini et al. 1955; see Weir 1996, Chapter 2, 

for a review) and the frequency of null alleles at microsatellite loci (Kalinowski and Taper 2006). 

The EM algorithm produces maximum-likelihood estimates of the frequency of alleles from each 

species, under the assumption that the frequency is the same for all loci. The analysis is identical 
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for estimating the ancestry of a single individual or for a sample of individuals for a population. I 

will present the method in the context of esti ating the ancestry of a single individual m

The following notation is useful. Let  represent the frequency of the ith taxon’s genes in 

an individual or population ( ∑ 1). Let  represent the number of times that allele k is 

observed at locus j within an individual. Let the indicator variable  equal 1 if all individuals 

in taxon i have allele k at locus j, and equal 0 if all individuals in taxon i have an alternative 

allele. Let NLoci denote the number of co-dominant diploid loci genotypes that have been 

genotyped. Let NSample represent the number of genes sampled for the individual (if there is no 

missing data, 2 ). Lastly, let  represent the number of alleles at locus j. 

For most applications with SNPs and indels, this will equal 2, but there is no restriction on the 

total number of alleles (provided all individuals in the taxa have the same allele). 

The EM algorithm uses iteration to find maximum-likelihood estimates of taxon-specific 

allele frequencies. Given an estimate of the allele frequencies in a taxon, , a better estimate, , 

can be obtained from 

∑
 

Once  is obtained, it can used as estimate of  to obtain an even better estimate ( ) (using 

the above equation). Iteration is continued until estimates converge. In practice, it is convenient 

to stop iteration when the total sum of the absolute value of changes between iterations is less 

than 10-6. 
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The method above is equally useful for estimating the frequency of taxon-specific alleles 

in a sample. In this application,  in the equation above is the total number of genes in the 

sample. If there is no missing data, this will equal 2 × NLoci × the number of individuals sampled.  
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86 A computer program, Clarcki, is available from the author’s website 

(www.montana.edu/kalinowski) for estimating the ancestry of individuals and populations using 

SNP data. The program runs on the Windows operating system. A user’s manual and sample 

data files are also available. 
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Table 1. Sample genotypes for nine diagnostic SNP loci in 10 trout of unknown ancestry. The 

population is within the range of Westslope cutthroat trout. Alleles that known to be non-native 

are identified underlined and shown in bold. Loci 1-3 have alleles that are unique in rainbow 

trout (RBT). Loci 4-6 have alleles that are unique in westslope cutthroat trout (WCT). Loci 7-9 

have alleles that are unique to Yellowstone cutthroat trout (YCT). 
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Locus
1 

Locus
2 

Locus
3

Locus
4

Locus
5

Locus
6

Locus
7 

Locus
8

Locus
9

WCT allele  C G A A T T G AA GG 
YCT allele  C G A C C C A GG TT 
RBT allele  T T T C C C G AA GG 

Trout #1 CC GG AA AA TT CT GG AA GT 
Trout #2 CC GT AT AA CT TT GG AA GG 
Trout #3 CC GG AT AA TT TT GG AA GG 
Trout #4 CC GG AA AA TT TT GG AA GG 
Trout #5 CT GG AT AA TT TT GG AA GG 
Trout #6 CC GG AA CA CT TT GG AA GG 
Trout #7 CT GG AA AA CT CT GG AA GG 
Trout #8 CC GG AT AA TT TT GA AA GG 
Trout #9 CC GT AA CA CT CT GG GA GT 
Trout #10 CC GG AA AA TT CT GG GA GG 

 97 



Table 2. Estimates of species composition for the 

10 trout whose genotypes are shown in Table 1. 
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Proportion 
WCT YCT RBT           

Trout #1  0.83 0.17 
Trout #2  0.75 0.25 
Trout #3  0.92 0.08 
Trout #4  1 
Trout #5  0.83 0.17 
Trout #6  0.82 0.09 0.09 
Trout #7  0.75 0.25 
Trout #8  0.84 0.08 0.08 
Trout #9  0.5 0.33 0.17 
Trout #10 0.83 0.17 
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