EE 477 Digital Signal Processing 1 Introduction

Course Overview

- Summarize course format
- Review Syllabus
- Discuss lab and lab reports
- Describe course philosophy: learning via lecture, homework, hands-on lab, and reading assignments

Signals

- Continuous time vs. discrete time
- 1-D signals and 2-D signals (images)
- Concept of sampling
- Signals can be represented by mathematical functions

Systems

• A system transforms a signal into a new signal or a different signal representation

- y(t) = F(x(t))
- Examples:

$$y(t) = 2^*x(t)$$

 $y(t) = [x(t)]^2$
 $y(t) = x(t-2)$

Systems (cont.)

• A discrete-time system is the same concept:

$$y[n] = 2^*x[n]$$

 $y[n] = {x[n]}^2$
 $y[n] = x[n-2]$

- Convert continuous-time signal to discretetime signal: y[n] = x(nT_s),
 - where T_s is the sampling period

Important Signals: Sinusoids

•
$$x(t) = A \cos(\omega_0 t + \phi)$$

 $A = amplitude$
 $\omega_0 = radian frequency$
 $\phi = phase shift$

- Example: $2 \cos(4\pi t + \pi/6)$
- sin(θ)=cos(θ-π/2)
 cos(θ)=sin(θ+π/2)

Sinusoids (cont.)

- Periodic: $x(t+T_0) = x(t)$ $\cos(\omega_0 t + 2\pi k) = \cos(\omega_0 t)$
- $\cos(\omega_0(t+T_0)) = \cos(\omega_0 t)$ iff $\omega_0 T_0 = 2\pi k$
- Period vs. Frequency $T_0 = 1/f_0$
- Consider waveform effect of changing f_o

Practical: Sinusoids in Matlab

- Example: create a 5 cycle segment of a 440Hz sinusoid with amplitude=127
- Step 1: Matlab is *discrete-time*, so choose sample rate. For example, pick 100 samples per waveform cycle:

100 samples	x 440 cycles =	44000 samples
cycle	second	second

Matlab sinusoids (cont.)

• $y[n]=127*cos(2\pi fnT_s)$

for 5 cycles, the range of n is

5 cycles	second	44000 samples	= 500 samples
	440 cycles	second	

• For Matlab: y=127*cos(2*pi*440*(0:499)/44000); plot((0:499)/44000 , y);

Matlab sinusoids (cont.)

EE 477 DSP Spring 2006 Maher

10

Matlab sinusoids (cont.)

- What if we chose a lower sampling rate (longer sample period)?
- How does Matlab "connect the dots" when plotting?
- What other plotting options?