EE 477 Digital Signal Processing 6 FIR Frequency Response

FIR response to sinusoids

- •The general definition of FIR: $[n] = \sum_{k=1}^{M} b_{k} \cdot x[n-k] = \sum_{k=1}^{M} h[k]$ $= 0$ $k=$ $=\sum b_k \cdot x[n-k] = \sum h[k] \cdot x[n-k]$ *M k M k* $y[n] = \sum k_k \cdot x[n-k] = \sum h[k] \cdot x[n-k]$ 0 $k=0$ $[n-k] = \sum h[k] \cdot x[n-k]$
- •What if input is complex exponential?

$$
x[n] = Ae^{j\phi}e^{j\hat{\omega}n}
$$

$$
y[n] = \sum_{k=0}^{M} b_k Ae^{j\phi}e^{j\hat{\omega}(n-k)}
$$

$$
= Ae^{j\phi}e^{j\hat{\omega}n}\sum_{k=0}^{M} b_k e^{-j\hat{\omega}k}
$$

$$
=Ae^{j\phi}e^{j\hat{\omega}n}H(\hat{\omega})
$$

EE 477 DSP Spring 2006 Maher 2

Frequency Response

• Note the result carefully:

 $y[n] = Ae^{j\phi}e^{j\hat{\omega}n}H(\hat{\omega})$

• IF the input is a complex exponential, the output is a complex exponential *with the same frequency*, but in general a different amplitude and phase as determined by *H*(ω): the *frequency response.*

Frequency response (cont.)

• For FIR systems, the frequency response is determined by the coefficient sequence (which is just the impulse response sequence).

$$
H(\hat{\omega}) = \sum_{k=0}^M b_k e^{-j\hat{\omega}k}
$$

• The frequency response is a complex value for a particular frequency.

Frequency response (cont.)

•Polar formulation:

$$
y[n] = Ae^{j\phi}e^{j\hat{\omega}n}H(\hat{\omega})
$$

= $|H(\hat{\omega})|A \cdot e^{j(\angle H(\hat{\omega})+\phi)}e^{j\hat{\omega}n}$

$$
|H(\hat{\omega})| = \sqrt{(real)^2 + (imag)^2}
$$

$$
\angle H(\hat{\omega}) = \arctan\left(\frac{imag}{real}\right)
$$

EE 477 DSP Spring 2006 Maher 5 5

Frequency Response (cont.)

•Example: $y[n] = x[n] + 4 \cdot x[n-1] + 3 \cdot x[n-2]$ ${b_k} = {1, 4, 3}$ $H(\hat{\omega}) = 1 + 4e^{-j\hat{\omega}} + 3e^{-j2\hat{\omega}}$ $(\hat{\omega}) = [(1 + 4\cos\hat{\omega} + 3\cos 2\hat{\omega})^2 + (4\sin\hat{\omega} + 3\sin 2\hat{\omega})^2]^{\frac{1}{2}}$ $(\hat{\omega}) = \arctan \left(\frac{-4 \sin \omega - 3 \sin 2\omega}{1 + 4 \cos \omega} \right)$ $\overline{}$ $\overline{}$ I \setminus $\big($ $+4\cos\hat{\omega}+$ $-4\sin\hat{\omega}$ $\angle H(\hat{\omega}) =$ ω + 3 cos 2 ω ω – 3 sin 2 ω ω $1 + 4\cos\hat{\omega} + 3\cos 2\hat{\omega}$ $4\sin\hat{\omega} - 3\sin 2\hat{\omega}$ $H(\hat{\omega})$ = arctan 1 $H(\hat{\omega}) = |(1 + 4\cos\hat{\omega} + 3\cos 2\hat{\omega})^2 + (4\sin\hat{\omega} + 3\sin 2\hat{\omega})^2$

EE 477 DSP Spring 2006 Maher 6 6 6 6 6 6 7 6 6 6 7 7 7 8 6 6 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 7 8

Frequency Response (cont.)

EE 477 DSP Spring 2006 Maher 7 and 7 7

Superposition

- If the input can be expressed as the sum of complex exponential signals, use the frequency response to determine the individual outputs, then add them up.
- •This allows response determination in the *frequency domain*.

Transient and Steady State

- Note that our complex exponential is doubly infinite: all values of *n*
- •Any practical system will need to *start* and then (probably) *stop* later
- •Consider: $=\sum_{k=0}b_kx[n-k]=\sum_{k=0}b_kXe^{j\hat{\omega}(n-k)}u[n-$ = $x[n] = Xe^{j\hat{\omega}n}u[n]$ *M k* $j\hat{\omega}$ (*n*- k *k M k* $y[n] = \sum b_k x[n-k] = \sum b_k Xe^{j\hat{\omega}(n-k)}u[n-k]$ 0 0 l ₹ $\overline{}$ \prec ≥ = 0, $n < 0$ 1, $n \geq 0$ unit step: $u[n]$ *n n u n*

EE 477 DSP Spring 2006 Maher 9

Freq. Response Properties

- For FIR: $h[k] = b_k, 0 \le k \le M$ $\hat{a} = \sum_{k=1}^{M} h[k]$ = $=\sum h[k]e^{-}$ *M k* $H(\hat{\omega}) = \sum h[k]e^{-j\hat{\omega}k}$ 0 $\hat{\omega}$) = $\sum h[k]e^{-j\hat{\omega}k}$
- Note that $H(\omega)$ is always periodic in 2π
- If FIR coefs b_k are real, this implies that *H*(*Ȧ*) has *conjugate symmetry:*

$$
H(-\hat{\omega}) = H^*(\hat{\omega})
$$

EE 477 DSP Spring 2006 Maher 11 and 11 and 11

Conjugate Symmetry

- Conjugate symmetry $H(-\hat{\omega}) = H^*(\hat{\omega})$ indicates that the negative frequency portion of the spectrum is the complex conjugate of the positive frequency portion
- If we know one, we can calculate the other

Conjugate Symmetry Proof

$$
H^*(\hat{\omega}) = \left(\sum_{k=0}^M b_k e^{-j\hat{\omega}k}\right)^*
$$

=
$$
\sum_{k=0}^M b_k^* e^{+j\hat{\omega}k}
$$

=
$$
\sum_{k=0}^M b_k e^{-j(-\hat{\omega})k} = H(-\hat{\omega})
$$

Magnitude is an even function, Phase is odd Real part is even, imaginary part is odd

EE 477 DSP Spring 2006 Maher 13

Discrete time processing of continuous time signals

• Sample a continuous-time signal, perform discrete-time processing, then reconstruct the continuous-time signal

EE 477 DSP Spring 2006 Maher 14 and 14

Discrete-time processing (cont.)

- Effect of sampling: assume $j_{ωt}$ $y(t) = H(\omega T_s) X e^{j\omega t}$ j ωnT *s* $y[n] = H(\hat{\omega})Xe^{j\hat{\omega}n} = H(\omega T_{s})Xe^{j\omega nT_{s}}$ *s* $\chi[n] = X e^{j\omega n T_s} = X e^{j\hat\omega n}, \,\,\hat\omega = \omega T_s$ *s* $x(t) = Xe^{j\omega t}$, sample at $t = nT$
- Overall response behaves like a continuoustime system with response $H(\omega \mathcal{T}_\mathrm{s})$