EELE 217 Spring 2012

Example of Sabine reverberation time calculation

Consider a rectangular room with floor dimensions 15m x 20m and a ceiling height of 4m.

For this example, let's assume that the floor material has absorptivity a = 0.2, ceiling a = 0.4, and wall material has a = 0.6.

<u>Volume</u> of the room is: L x W x H = 15 x 20 x 4 m³ = $\underline{1200 \text{ m}^3}$

There are six surfaces:

Floor area = $15x20 = 300 \text{ m}^2$ Ceiling area = $15x20 = 300 \text{ m}^2$ Front and back walls = $15x4 = 60 \text{ m}^2$ each Side walls = $20 \times 4 = 80 \text{ m}^2$ each

The Sabine formula is:

$$T_{60} = \frac{0.161V}{\sum_{i} S_{i} a_{i}}$$

 $V = \text{total volume in m}^3$ $S_i = \text{area of surface } i \text{ in m}^2$ $a_i = \text{absorptivity of surface } i$

Thus, the <u>numerator</u> becomes $0.161 V = 0.161 \times 1200 = 193.2$

The denominator is the sum of each surface area times its absorptivity:

Floor: 300 x 0.2 = 60 Ceiling: 300 x 0.4 = 120 Front: 60 x 0.6 = 36 Back: 60 x 0.6 = 36 Side1: 80 x 0.6 = 48 Side2: 80 x 0.6 = 48

 $\underline{Sum in denominator} = \underline{348}$

So the estimated T_{60} for this example room is 193.2 / 348 = 0.56 seconds