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Sampling a  
Continuous Signal 

• Obtain a sequence of signal samples 
using a periodic instantaneous sampler: 
 
 

• Often plot discrete signals as dots or 
“lollypops”: 
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Sampling a Sinusoid 

• Discrete time sinusoid via sampling: 
 
 

• Note that A, cos, φ are the same. 
• Discrete-time radian frequency: 

 
• Note that Ts cannot be deduce from x[n] 

alone! 
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Reconstruction?? 

• It is possible to reconstruct a 
continuous-time signal from its discrete-
time samples, but with restrictions. 

• The sampling theorem states that a 
signal can theoretically be reconstructed 
from its samples as long as  
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Sampling Rate 
• In short, we must sample at a rate at 

least double the highest frequency 
component present in the continuous-
time signal. 

• This minimum sampling rate is called 
the Nyquist rate. 

• Result:  continuous-time signal must be 
bandlimited prior to sampling in order to 
allow perfect reconstruction.  
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Aliasing 

• What happens if we don’t obey Nyquist? 
• Consider two signals: 
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Aliasing (cont.) 

• Now sample with period Ts: 
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Aliasing (cont.) 

• Note that the same sampled sequence 
occurs for both x(t) and y(t) even though 
they have different frequencies:  one 
signal is an alias of the other. 

• Further, note that infinite number of 
aliases since same discrete-time 
sequence for: ,...2,1,00 =±= , kkfff s
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Folding 

• Also can find aliases corresponding to 
the negative frequency components: 
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Spectral View of Sampling 

• The effect of sampling is to create 
images of the continuous-time spectrum 
centered at multiples of the sampling 
frequency: 
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Spectral View (cont.) 

• We can reconstruct the continuous 
signal by removing (filtering) the images 
and keeping the baseband image: 
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Aliasing 

• What if f0 > fs/2 ?  Sampling still creates 
images, but now the baseband image is 
not the expected original signal, but 
actually aliases. 
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Reconstruction==Interpolation 

• The reconstruction process can be thought of 
as interpolating between the discrete-time 
samples. 

• Various interpolation approximations can be 
considered:  “hold” last value, “connect the 
dots” (linear), fit a smooth polynomial curve, 
etc. 

• Optimal reconstruction requires a process 
that retains only the baseband:  a perfect 
lowpass filter. 
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Concept:  Pulse-overlap 
Interpolation 

• Consider constructing the continuous 
waveform by shifting and scaling a set 
of pulses—one centered per discrete-
time sample—then sum them all up. 

 -Ts/2    Ts/2 Time index, n 
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Pulse Overlap (cont.) 

• Triangular pulse = linear interpolation 
• Similar for higher-order interpolation 

 -Ts          Ts Time index, n 
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Reconstruction via Filtering 

• The pulse overlap scheme implements time 
domain convolution. 

• Time domain convolution is equivalent to 
frequency domain multiplication 

• We want a perfect rectangle (low pass) in the 
frequency domain:  this corresponds to a sinc 
pulse in time domain: 
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Oversampling 
• Interpolation is easier of samples are 

close together:  Ts is very small 
• Small Ts means very high fs 
• From a spectral viewpoint, this 

oversampling means that fmax << fs 
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Filter need not be perfect 
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